An Investigation of Recurrent Neural Architectures for Drug Name Recognition

نویسندگان

  • Raghavendra Chalapathy
  • Ehsan Zare Borzeshi
  • Massimo Piccardi
چکیده

Drug name recognition (DNR) is an essential step in the Pharmacovigilance (PV) pipeline. DNR aims to find drug name mentions in unstructured biomedical texts and classify them into predefined categories. State-of-the-art DNR approaches heavily rely on hand-crafted features and domain-specific resources which are difficult to collect and tune. For this reason, this paper investigates the effectiveness of contemporary recurrent neural architectures the Elman and Jordan networks and the bidirectional LSTM with CRF decoding at performing DNR straight from the text. The experimental results achieved on the authoritative SemEval-2013 Task 9.1 benchmarks show that the bidirectional LSTM-CRF ranks closely to highly-dedicated, hand-crafted systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners

MOTIVATION Accurate prediction of protein contact maps is an important step in computational structural proteomics. Because contact maps provide a translation and rotation invariant topological representation of a protein, they can be used as a fundamental intermediary step in protein structure prediction. RESULTS We develop a new set of flexible machine learning architectures for the predict...

متن کامل

Adverse Drug Reaction Classification With Deep Neural Networks

We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016